Effect of Nozzle Quantity on the Flow Field Characteristics and Grinding Efficiency in a Steam Jet Mill

Author:

Huang Shenglong1,Zhang Yulu1,Yin Xixi1,Zhang Mingxing12,Li Hong12,Wang Zhe12,Chen Haiyan12,Wang Huan13

Affiliation:

1. School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China

2. Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China

3. School of Mechanical Engineering, Sichuan University of Science and Engineering, Yibin 644000, China

Abstract

A steam jet mill (SJM), which employs industrial waste heat steam as a gas source, is a widely utilized apparatus for the pulverization of fly ash. To achieve elevated single-machine grinding capacity, efficiency improvement research based on structural optimization should be conducted. In this study, numerical simulations and industrial experiments are carried out on SJMs equipped with three and six nozzles (hereinafter referred to as N3 and N6, respectively) to study the influence of nozzle quantity on the flow field and grinding efficiency. The numerical simulation results indicate that, under the N3 structure, particles can achieve a higher impact velocity in the comminution area and improve the kinetic energy of a single impact. In the conveying area, the airflow diffusion is better, resulting in an upward flow field that is more uniform. The classification area shows an increase in the uniformity of the flow field and a significant reduction in the local vortex structure, which is beneficial for accurate particle classification. In the interim, industrial experiments demonstrate that the N3 structure can markedly enhance the processing capacity and energy efficiency of the system. The smaller the feed particle size, the more pronounced the efficiency improvement.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3