Unravelling the Deformation of Paleoproterozoic Marbles and Zn-Pb Ore Bodies by Combining 3D-Photogeology and Hyperspectral Data (Black Angel Mine, Central West Greenland)

Author:

Guarnieri Pierpaolo,Thiele SamORCID,Baker NigelORCID,Sørensen ErikORCID,Kirsch MoritzORCID,Lorenz SandraORCID,Rosa Diogo,Unger Gabriel,Zimmermann Robert

Abstract

The Black Angel Zn-Pb ore deposit is hosted in folded Paleoproterozoic marbles of the Mârmorilik Formation. It is exposed in the southern part of the steep and inaccessible alpine terrain of the Rinkian Orogen, in central West Greenland. Drill-core data integrated with 3D-photogeology and hyperspectral imagery of the rock face allow us to identify stratigraphic units and extract structural information that contains the geological setting of this important deposit. The integrated stratigraphy distinguishes chemical/mineralogical contrast within lithologies dominated by minerals that are difficult to distinguish with the naked eye, with a similar color of dolomitic and scapolite-rich marbles and calcitic, graphite-rich marbles. These results strengthen our understanding of the deformation style in the marbles and allow a subdivision between evaporite-carbonate platform facies and carbonate slope facies. Ore formation appears to have been mainly controlled by stratigraphy, with mineralizing fluids accumulating within permeable carbonate platform facies underneath carbonate slope facies and shales as cap rock. Later, folding and shearing were responsible for the remobilization and improvement of ore grades along the axial planes of shear folds. The contact between dolomitic scapolite-rich and calcitic graphite-rich marbles probably represents a direct stratigraphic marker, recognizable in the drill-cores, to be addressed for further 3D-modeling and exploration in this area.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3