NLA-Bit: A Basic Structure for Storing Big Data with Complexity O(1)

Author:

Ivanova Krasimira BorislavovaORCID

Abstract

This paper introduces a novel approach for storing Resource Description Framework (RDF) data based on the possibilities of Natural Language Addressing (NLA) and on a special NLA basic structure for storing Big Data, called “NLA-bit”, which is aimed to support middle-size or large distributed RDF triple or quadruple stores with time complexity O(1). The main idea of NLA is to use letter codes as coordinates (addresses) for data storing. This avoids indexing and provides high-speed direct access to the data with time complexity O(1). NLA-bit is a structured set of all RDF instances with the same “Subject”. An example based on a document system, where every document is stored as NLA-bit, which contains all data connected to it by metadata links, is discussed. The NLA-bits open up a wide field for research and practical implementations in the field of large databases with dynamic semi-structured data (Big Data). Important advantages of the approach are as follow: (1) The reduction of the amount of occupied memory due to the complete absence of additional indexes, absolute addresses, pointers, and additional files; (2) reduction of processing time due to the complete lack of demand—the data are stored/extracted to/from a direct address.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of Drawbacks of the Software Development Artifacts Reuse Approaches based on Semantic Analysis;Advances in Computer Science for Engineering and Education VI;2023

2. NLA-layer: A new data structure for storing of dynamic (streaming) data;THE 9TH INTERNATIONAL CONFERENCE OF THE INDONESIAN CHEMICAL SOCIETY ICICS 2021: Toward a Meaningful Society;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3