Potential Impacts of Climate Change on Surface Water Resources in Arid Regions Using Downscaled Regional Circulation Model and Soil Water Assessment Tool, a Case Study of Amman-Zerqa Basin, Jordan

Author:

Al-Hasani Ibrahim1ORCID,Al-Qinna Mohammed1,Hammouri Nezar Atalla23ORCID

Affiliation:

1. Department of Land Management and Environment, Prince El-Hassan Bin Talal Faculty for Natural Resources & Environment, The Hashemite University, Zarqa 13133, Jordan

2. Department of Applied Physics and Astronomy, Faculty of Science, University of Sharjah, Sharjah 27272, United Arab Emirates

3. Department of Earth and Environmental Sciences, Prince El-Hassan Bin Talal Faculty for Natural Resources & Environment, The Hashemite University, Zarqa 13133, Jordan

Abstract

Water scarcity, aggravated by climate change impacts, threatens all sectors in arid regions and hampers sustainable development plans. This work aims to assess the potential impacts of climate change on surface water resources of Amman-Zerqa Basin, Jordan, using the Soil Water Assessment Tool model (SWAT) and outputs from the Downscaled Regional Circulation Model. Future scenarios were developed based on combining two Representative Concentration Pathways (RCPs 4.5 and 8.5). A reference scenario from 1973 to 2015 was used to compare the current climate with future climates and their impacts on hydrological processes. Hydrologic modeling outputs showed very good performance ratings for calibration and validation periods. Statistical bias correction of the Downscale Regional Circulation Model (GCM) indicated that linear scaling for precipitation data was the best-performing bias correction method, along with variance scaling and distribution mapping methods for minimum and maximum temperature, respectively. The coupled future model simulations indicated a reduction in crucial water balance components under all modeled scenarios. The simulated reductions range between 3.7% and 20.7% for precipitation, 22.3–41.6% for stream flow, 25.0–47.0% for surface runoff, 0.5–13.4% for evapotranspiration, and 21.5–41.4% for water yield, from conservative to the severe scenario, respectively. In conclusion, spatial analyses indicated the presence of three zones of impact. Thus, future climate and hydrological adaptation measures should focus on the provided zoning.

Publisher

MDPI AG

Subject

Atmospheric Science

Reference34 articles.

1. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. Applying IPCC 2014 framework for hazard-specific vulnerability assessment under climate change;Sharma;Environ. Res. Commun.,2019

3. Ministry of Environment (MOENV), and United Nations Development Programme (UNDP) (2014). Jordan’s Third National Communication on Climate Change.

4. Climate and hydrological models to assess the impact of climate change on hydrological regime: A review;Kour;Arab. J. Geosci.,2016

5. Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.C., Collins, W., Cox, P., Driouech, F., Emori, S., and Eyring, V. (2014). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3