Time-Range Adaptive Focusing Method Based on APC and Iterative Adaptive Radon-Fourier Transform

Author:

Guan Jian,Pei JiazhengORCID,Huang Yong,Chen XiaolongORCID,Chen Baoxin

Abstract

In conventional radar signal processing, the cascade of pulse compression (i.e., matched filter) and Radon-Fourier transform (RFT) can extract the estimated scattering coefficient of the target in the range-velocity dimension through long-time coherent integration (i.e., long-time focusing). However, matched filter has problems such as range sidelobes. RFT belongs to a standard time-dimension matched filter, which will cause velocity sidelobes of strong targets. The range-velocity sidelobes caused by matched filter and RFT will mask other weak targets and affect the subsequent signal processing processes such as target detection and tracking. To suppress range-velocity sidelobes and achieve better range-velocity focusing, this paper proposes a time-range adaptive focusing method named APC-IARFT for short, which is based on adaptive pulse compression (APC) and newly proposed iterative adaptive Radon-Fourier transform (IARFT). In the APC-IARFT method, the radar time-range adaptive focusing consists of two steps: range-dimension adaptive focusing and long-time adaptive focusing in the velocity dimension. The APC method can realize range-dimension adaptive focusing and suppress range sidelobes of strong targets. Then, based on the minimum variance distortionless response (MVDR) formulation, the proposed IARFT method iteratively designs time-dimension adaptive filter of each range-velocity grid according to the received signal processed by APC to suppress velocity sidelobes of strong targets and achieve long-time adaptive focusing. Compared with the conventional cascade of matched filter and RFT, the cascade of matched filter and adaptive Radon-Fourier transform (ARFT), the results show that the proposed time-range adaptive focusing method (i.e., APC-IARFT) is competent for a variety of scenarios.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Youth Innovation and Technology Support Plan of Universities in Shandong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3