An Empirical Grid Model for Precipitable Water Vapor

Author:

Wang XinzhiORCID,Chen Fayuan,Ke Fuyang,Xu ChangORCID

Abstract

Atmospheric precipitable water vapor (PWV) is a key variable for weather forecast and climate research. Various techniques (e.g., radiosondes, global navigation satellite system, satellite remote sensing and reanalysis products by data assimilation) can be used to measure (or retrieve) PWV. However, gathering PWV data with high spatial and temporal resolutions remains a challenge. In this study, we propose a new empirical PWV grid model (called ASV-PWV) using the zenith wet delay from the Askne model and improved by the spherical harmonic function and vertical correction. Our method is convenient and enables the user to gain PWV data with only four input parameters (e.g., the longitude and latitude, time, and atmospheric pressure of the desired position). Profiles of 20 radiosonde stations in Qinghai Tibet Plateau, China, along with the latest publicly available C-PWVC2 model are used to validate the local performance. The PWV data from ASV-PWV and C-PWVC2 is generally consistent with radiosonde (the average annual bias is −0.44 mm for ASV-PWV and −1.36 mm for C-PWVC2, the root mean square error (RMSE) is 3.44 mm for ASV-PWV and 2.51 mm for C-PWVC2, respectively). Our ASV-PWV performs better than C-PWVC2 in terms of seasonal characteristics. In general, a sound consistency exists between PWV values of ASV-PWV and the fifth generation of European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis (ERA5) (total 7381 grid points in 2020). The average annual bias and RMSE are −0.73 mm and 4.28 mm, respectively. ASV-PWV has a similar performance as ERA5 reanalysis products, indicating that ASV-PWV is a potentially alternative option for rapidly gaining PWV.

Funder

The Key Research and Development Program of Jiangsu Province

The Natural Science Foundation of Jiangsu Province

The Higher Education Reform Educational Project of Jiangsu Province

The Postgraduate Research & Practice Innovation Program of Jiangsu Province

Science and Technology Project of Changzhou City

The Science and Technology Development Fund Project of Wuxi city

Key Research and Development Program of Jiangsu Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference51 articles.

1. Research Progress and Prospect of GNSS Space Environment Science;Yao;Acta Geod. Cartogr. Sin.,2017

2. A matter of humidity;Dessler;Science,2009

3. Upper-tropospheric moistening in response to anthropogenic warming;Chung;Proc. Natl. Acad. Sci. USA,2014

4. Trends and variability in column-integrated atmospheric water vapor;Trenberth;Clim. Dyn.,2005

5. Atmospheric Warming and the Amplification of Precipitation Extremes;Allan;Science,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3