Mixed Noise Estimation Model for Optimized Kernel Minimum Noise Fraction Transformation in Hyperspectral Image Dimensionality Reduction

Author:

Xue Tianru,Wang YuemingORCID,Chen YuweiORCID,Jia JianxinORCID,Wen MaoxingORCID,Guo Ran,Wu Tianxiao,Deng Xuan

Abstract

Dimensionality reduction (DR) is of great significance for simplifying and optimizing hyperspectral image (HSI) features. As a widely used DR method, kernel minimum noise fraction (KMNF) transformation preserves the high-order structures of the original data perfectly. However, the conventional KMNF noise estimation (KMNF-NE) uses the local regression residual of neighbourhood pixels, which depends heavily on spatial information. Due to the limited spatial resolution, there are many mixed pixels in HSI, making KMNF-NE unreliable for noise estimation and leading to poor performance in KMNF for classification on HSIs with low spatial resolution. In order to overcome this problem, a mixed noise estimation model (MNEM) is proposed in this paper for optimized KMNF (OP-KMNF). The MNEM adopts the sequential and linear combination of the Gaussian prior denoising model, median filter, and Sobel operator to estimate noise. It retains more details and edge features, making it more suitable for noise estimation in KMNF. Experiments using several HSI datasets with different spatial and spectral resolutions are conducted. The results show that, compared with some other DR methods, the improvement of OP-KMNF in average classification accuracy is up to 4%. To improve the efficiency, the OP-KMNF was implemented on graphics processing units (GPU) and sped up by about 60× compared to the central processing unit (CPU) implementation. The outcome demonstrates the significant performance of OP-KMNF in terms of classification ability and execution efficiency.

Funder

National Natural Science Foundation of China

Academy of Finland

Strategic Research Council

Chinese Academy of Science

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3