Effect of an In-Office Bleaching Agent with Surface Pre-Reacted Glass-Ionomer Filler on the Enamel Surface: A In-Vitro Study

Author:

Shimojima Mika1,Hiraishi Noriko1ORCID,Akabane Kodai1,Nassar Mohannad2ORCID,Otsuki Masayuki1,Shimada Yasushi1ORCID

Affiliation:

1. Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University, Tokyo 113-8549, Japan

2. Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates

Abstract

In-office bleaching with high concentrations of hydrogen peroxide (H2O2) agents causes undesirable alterations in the enamel. Surface pre-reacted glass-ionomer (S-PRG) filler is a functional material known for its acid-neutralizing and demineralization-inhibition properties. This study evaluates the effect of S-PRG filler incorporation in H2O2-based bleaching on the enamel surface. Bovine enamel surfaces were bleached using a bleaching paste formulated with a liquid (35% H2O2) and a powder containing 5% or 10% S-PRG filler. The surface roughness and the Vickers microhardness of the treated enamel surfaces were evaluated. The enamel surfaces were observed under a scanning electron microscope (SEM) and analyzed using energy dispersive X-ray (EDX) technology. The surfaces were challenged by citric acid and observed by SEM. The specimens bleached with the paste containing the S-PRG filler showed lower enamel surface roughness and higher microhardness values than did those bleached with the plain paste (0% S-PRG filler); meanwhile, there were no significant differences between the 5% or 10% S-PRG filler groups. The S-PRG filler groups showed enamel surface morphologies similar to those of the non-bleached enamel, according to SEM observation, and EDX analysis detected the presence of fluoride and strontium ions. The S-PRG filler groups showed a higher resistance to erosion. The S-PRG filler mitigated the detrimental effects of bleaching agents on the enamel surface and provided resistance to erosion.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3