Microfluidic Preconcentration Chip with Self-Assembled Chemical Modified Surface for Trace Carbonyl Compounds Detection

Author:

Cheng Jie,Shao Jianwei,Ye Yifei,Zhao Yang,Huang Chengjun,Wang Li,Li MingxiaoORCID

Abstract

Carbonyl compounds in water sources are typical characteristic pollutants, which are important indicators in the health risk assessment of water quality. Commonly used analytical chemistry methods face issues such as complex operations, low sensitivity, and long analysis times. Here, we report a silicon microfluidic device based on click chemical surface modification that was engineered to achieve rapid, convenient and efficient capture of trace level carbonyl compounds in liquid solvent. The micro pillar arrays of the chip and microfluidic channels were designed under the basis of finite element (FEM) analysis and fabricated by the microelectromechanical systems (MEMS) technique. The surface of the micropillars was sputtered with precious metal silver and functionalized with the organic substance amino-oxy dodecane thiol (ADT) by self-assembly for capturing trace carbonyl compounds. The detection of ppb level fluorescent carbonyl compounds demonstrates that the strategy proposed in this work shows great potential for rapid water quality testing and for other samples with trace carbonyl compounds.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3