3D-Printing to Plan Complex Transcatheter Paravalvular Leaks Closure

Author:

Ciobotaru Vlad,Tadros Victor-XavierORCID,Batistella Marcos,Maupas Eric,Gallet Romain,Decante BenoitORCID,Lebret Emmanuel,Gerardin Benoit,Hascoet SebastienORCID

Abstract

Background: Percutaneous closure of paravalvular leak (PVL) has emerged as an alternative to surgical management in selected cases. Achieving complete PVL occlusion, while respecting prosthesis function remains challenging. A multimodal imaging analysis of PVL morphology before and during the procedure is mandatory to select an appropriate device. We aim to explore the additional value of 3D printing in predicting device related adverse events including mechanical valve leaflet blockade, risk of device embolization and residual shunting. Methods: From the FFPP registries (NCT05089136 and NCT05117359), we included 11 transcatheter PVL closure procedures from three centers for which 3D printed models were produced. Cardiac CT was used for segmentation for 3D printed models (3D-heartmodeling, Caissargues, France). Technology used a laser to fuse very fine powders (TPU Thermoplastic polyurethane) into a final part-laser sintering technology (SLS) with an adapted elasticity. A simulation on 3D printed model was performed using a set of occluders. Results: PVLs were located around aortic prostheses in six cases, mitral prostheses in four cases and tricuspid ring in one case. The device chosen during the simulation on the 3D printed model matched the one implanted in eight cases. In the three other cases, a similar device type was chosen during the procedures but with a different size. A risk of prosthesis leaflet blockade was identified on 3D printed models in four cases. During the procedure, the occluder was removed before release in one case. In another case the device was successfully repositioned and released. In two patients, leaflet impingement was observed post-operatively and surgical device removal had to be performed. Conclusion: In a case-series of complex transcatheter PVL closure procedures, hands-on simulation testing on 3D printed models proved its usefulness to plan and facilitate these challenging procedures.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3