Evaluation of the Correlation between Regional Retinal Ganglion Cell Damage and Visual Field Sensitivity in Patients with Advanced Glaucoma

Author:

Rezkallah AminaORCID,Douma Ikrame,Bonjour Maxime,Mathis ThibaudORCID,Kodjikian LaurentORCID,Denis Philippe

Abstract

(1) Background: to investigate the correlation between structural (retinal ganglion cells and retinal nerve fibers) and functional alterations analyzed point-by-point in the central 10 degrees of the visual field of patients with advanced glaucoma using Humphrey 10-2 visual field tests. (2) Methods: Single-center prospective cohort study carried on from October 2018 to February 2019 at the Croix-Rousse hospital, Lyon, France. The primary outcome measure was the point-by-point correlation between retinal sensitivity (Humphrey 10-2) and retinal ganglion cell complex (GCC) thickness. (3) Results: 29 eyes of 27 patients were examined. Of these, 15 eyes had a mean deviation (MD) less than −20 dB. There were statistically significant linear relationships between GCC thickness and 10-2 visual field sensitivity for several points in the lower part of the visual field, with lower retinal sensitivity being associated with thicker GCC layers. There were no strong linear relationships or statistically significant correlations in the other regions of the visual field. For the patients with MD < −20 dB, there were statistically significant linear relationships between GCC thickness and 10-2 visual field sensitivity for several points in the superior nasal region. Retinal sensitivity was not correlated with retinal nerve fibre layer thickness. (4) Conclusions: In this study of patients with advanced glaucoma, GCC thickness was linearly associated with 10-2 visual field sensitivity in certain regions, negatively for patients with less-severe glaucoma. The initial thickening raises questions about the apoptosis mechanism, while the thinning observed in the most severe cases is consistent with the ganglion cell death identified on visual field tests.

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3