Applying Event-Related Potentials to Measure Perceptual Experience toward the Navigation Interface of a Mobile Game for Improving the Design

Author:

Guo Fu,Jiang Jun-Yi,Tian Xiao-Hui,Chen Jia-Hao

Abstract

High-level user experience has become the key factor that one game can be successful in the game market. The home page of mobile games, especially the design of the navigation interface, has a significant impact on users’ initial experience, which is an important determent to users’ preferences and purchase decision. Hence, measuring users’ perceptual experiences of the navigation interface can help designers understand real demands from users. Previous studies primarily used self-report scales or interviews to measure gamers’ perceptual experiences. However, it may not reflect gamers’ real perceptions that they are feeling as most of time the feeling is short-lived and implicit. To fill this gap, the current study attempted to combine subjective evaluation with event-related potentials (ERP) to objectively measure gamers’ perceptual experience evoked by the navigation interface of the mobile game. The navigation interfaces of mobile games with low, medium, and high perceptual experience were developed and the ERP experiment was conducted to detect the differences in users’ electroencephalograph (EEG) components when subjects were exposed to the different design levels of navigation interface. The results showed that N1 reaction showed asymmetry in brain regions, and P2 and N2 showed symmetry, and relative to the navigation interface with low and medium perceptual experiences, the high level of navigation interface induced a larger amplitude of N2 in the anterior scalp and P2 in the frontal scalp. These EEG components can, therefore, be regarded as significant indicators reflecting gamers’ perceptions of the navigation interface. The findings benefit game companies of navigation interface designs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3