The Brooks and Corey Capillary Pressure Model Revisited from Pore Network Simulations of Capillarity-Controlled Invasion Percolation Process

Author:

Lu XiangORCID,Kharaghani AbdolrezaORCID,Adloo Hadi,Tsotsas EvangelosORCID

Abstract

Relating the macroscopic properties of porous media such as capillary pressure with saturation is an on-going problem in many fields, but examining their correlations with microstructural traits of the porous medium is a challenging task due to the heterogeneity of the solid matrix and the limitations of laboratory instruments. Considering a capillarity-controlled invasion percolation process, we examined the macroscopic properties as functions of matrix saturation and pore structure by applying the throat and pore network model. We obtained a relationship of the capillary pressure with the effective saturation from systematic pore network simulations. Then, we revisited and identified the microstructure parameters in the Brooks and Corey capillary pressure model. The wetting phase residual saturation is related to the ratio of standard deviation to the mean radius, the ratio of pore radius to the throat length, and pore connectivity. The size distribution index in the Brooks and Corey capillary pressure model should be more reasonably considered as a meniscus size distribution index rather than a pore size distribution index, relating this parameter with the invasion process and the structural properties. The size distribution index is associated with pore connectivity and the ratio of standard deviation to mean radius (σ0/r¯), increasing with the decline of σ0/r¯ but the same for networks with same σ0/r¯. The identified parameters of the Brooks and Corey model might be further utilized for correlations with other transport properties such as permeability.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3