Characteristics of Atmospheric Deposition during the Period of Algal Bloom Formation in Urban Water Bodies

Author:

Zheng Tao,Cao Haihua,Liu Wei,Xu Jingcheng,Yan Yijing,Lin XiaohuORCID,Huang Juwen

Abstract

Urban water bodies are limited by poor mobility, small surface areas, and little water supply; thus, they are sensitive to atmospheric nutrient inputs, especially during the optimal period of algae growth. This study investigated the impact of atmospheric deposition on the Quyang urban water body in Shanghai. Observations that coupled atmospheric organic matter, nitrogen and phosphorous and the actual urban water body (nutrient availability and Chlorophyll-a concentrations (Chl-a)) were conducted during spring and summer. Atmospheric total organic carbon (TOC), total nitrogen (TN), ammonia (N-NH4+) and total phosphorus (TP) deposition ranged from 35–81, 3–40, 0.79–20.40 and 0.78–0.25 mg m−2 d−1, respectively. The soluble N/P molar ratios of the bulk deposition (ranging from 56–636) were well above the Redfield ratio (N/P = 16). Nutrient inputs from atmospheric deposition have been suggested to be a strong factor for increasing the likelihood of P limitation in the water bodies. The actual loads to small, shallow urban water bodies were assessed and found to be ~50, 130, 130 (the N-fixation contributes to the atmospheric deposition inputs especially during the spring), and 80% of TOC, TN, N-NH4+, and TP, respectively, representing nutrients transferred into the water phase. The maximum primary production (evaluated as Chl-a) stock resulting in a 2-m-deep water column from the above inputs ranged from 2.54–7.98 mg Chl-a m−3. As a continuous source of nutrients, atmospheric deposition should not be underestimated as a driving force for urban water body eutrophication, and it potentially influences primary production, especially during the optimal algae growth period.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3