Effect of Blue LED Light on Bioemulsifier Production in Bioreactor by Aureobasidium pullulans LB83 in Solid State Fermentation

Author:

Rubio-Ribeaux Daylin1ORCID,Costa Rogger Alessandro Mata da1,Pereira Renan Murbach1,Marcelino Paulo Ricardo Franco1,Casciatori Fernanda Perpétua2ORCID,Santos Júlio César dos1,Silva Silvio Silvério da1ORCID

Affiliation:

1. Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo 12602-810, Brazil

2. Chemical Engineering Department, Center of Exact Sciences and of Technology, Federal University of São Carlos, São Paulo 13565-905, Brazil

Abstract

This study analyzed the impact of LED light on bioemulsifier production by Aureobasidium pullulans LB83 in solid-state fermentation (SSF) using pre-treated sugarcane bagasse (PSB). The biomass was subjected to alkaline pre-treatment and conducted fermentations in Erlenmeyer flasks containing 2 g of PSB that were immersed in a humectant solution with a cell concentration of 108 cells/mL. The screening involved varying LED light wavelengths (green, red, orange, and blue) over a 7-day period at 28 °C. Notably, under the influence of blue light, the process achieved maximum production, yielding an EI24% of 63.9% and 45.1% for soybean oil and kerosene, respectively. Prolonged exposure to blue light for 11 days at 28 °C resulted in maximum bioemulsifier production (75%) and cellulolytic enzyme activity (3.67 IU g−1 for endoglucanase and 0.41 IU g−1 for exoglucanase) with soybean oil and kerosene. Experiments in a bioreactor, with varying light conditions (dark, white light, and blue LED light), demonstrated that the blue LED bioreactor outperformed others, achieving EI24% values of 55.0% and 45.7% for soybean oil and kerosene, respectively. The scanning electron microscopy (SEM) confirmed yeast growth under these conditions after 9 days. Our findings highlight the significant potential of LED light to enhance bioemulsifier production by A. pullulans LB83 from PSB.

Funder

FAPESP

Conselho Nacional de Desenvolvimento Científico e Tecnológico

CNPq

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3