Biorefinery Approach for H2 and Acids Production Based on Uncontrolled pH Fermentation of an Industrial Effluent

Author:

Ibañez-López María Eugenia1ORCID,Díaz-Domínguez Encarnación1ORCID,Suffo Miguel2ORCID,Makinia Jacek3,García-Morales Jose Luis1ORCID,Fernández-Morales Francisco Jesús4ORCID

Affiliation:

1. Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, IVA-GRO-Wine and Agrifood Research Institute, University of Cadiz, 11510 Cadiz, Spain

2. Department of Mechanical Engineering and Industrial Design, High Engineering School, Universidad de Cádiz, Campus Río San Pedro S/N, Puerto Real, 11510 Cadiz, Spain

3. Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland

4. Department of Chemical Engineering, University of Castilla-La Mancha, Avda. Camilo José Cela S/N, 13071 Ciudad Real, Spain

Abstract

In this work, the feasibility of uncontrolled pH acidogenic fermentation of industrial organic effluent from corn-bioethanol production was studied and modelled by using a Monod-based mathematical model. In order to do that, several tests were carried out at different initial pH values, ranging from 4 to 6. The experimental data showed a pH reduction during the fermentation process due to the generation of short-chain acids. When starting at initial pH of 5.0 and 6.0, the substrates were fully fermented reaching final pH s over 4 units in both cases and a final undissociated fatty acid concentration of about 80 (mmol·L−1) in both cases. Regarding fermentation at an initial pH of 4, the pH decreased to 3.5 units, and the organic substrates were not fully fermented due to the stoppage of the fermentation. The stoppage was caused by the very acidic pH conditions. The biomass showed an uncoupled growth as the operating conditions became more acidic, and, finally, the biomass growth was zero. Regarding the generation of fermentation products, in general terms, the highest economical value of products was obtained when fermenting at an initial pH of 5. More specifically, acetic acid was the acid that presented the highest yield at an initial pH value of 4. Butyric yield showed the highest values at initial pH values of 5 and 6. The highest H2 yield (1.1 mol H2·mol−1 dextrose) was achieved at an initial pH value of 5. Finally, the experimental data were modelled using a Monod-based model. From this model, the value of the main kinetics and stoichiometric parameters were determined.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3