Supplemental Sewage Scum and Organic Municipal Solid Waste Addition to the Anaerobic Digestion of Thickened Waste Activated Sludge: Biomethane Potential and Microbiome Analysis

Author:

Aromolaran Adewale1ORCID,Sartaj Majid1,Abdallah Mohamed2ORCID

Affiliation:

1. Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, ON K1N-6N5, Canada

2. College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates

Abstract

Sewage scum (SS) is collected from sedimentation tanks in wastewater treatment plants (WWTPs). Despite its huge biogas potential, there is limited information on its potential as a co-substrate and microbial ecology, especially during anaerobic co-digestion (ACo-D) of the organic fraction of municipal solid waste (OFMSW) and thickened waste activated sludge (TWAS). In this biomethane potential (BMP) study, the bioenergy yield achieved by the supplemental addition of SS and OFMSW to TWAS was investigated, along with the microbial ecology. Compared with the digestion of TWAS alone, which produced 184.6 mLCH4 gVS−1, biomethane yield was enhanced by as much as 32.4–121.6% in trinary mixtures with SS and OFMSW, mainly due to the positive synergistic effect. Furthermore, a mixture of 40%SS + 10%TWAS + 50%OFMSW produced the highest biogas yield of 407 mLCH4 gVS−1, which is proof that existing WWTPs can produce additional energy by incorporating external bioresources, thereby reducing greenhouse gas emissions. Modified Gompertz and logistic function estimates showed that methane production rate improved by as much as 60% in a trinary mixture compared with the digestion of TWAS alone. The genus Methanosaeta, capable of generating methane by the acetoclastic methanogenic pathway among all the archaeal communities, was the most prominent, followed by hydrogenotrophic methanogen Methanospirillum.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3