Probiotic Evaluation of Lactiplantibacillus pentosus 68-1, a Rutin Conversion Strain Isolated from Jiangshui, by Genomic Analysis and Tests In Vitro

Author:

Xue Wenjiao1,Liu Chen1,Liu Yao1,Ding Hao1,An Chao1,Zhang Shizhe2,Ma Saijian1,Zhang Qiwen1

Affiliation:

1. Shaanxi Institute of Microbiology, Xi’an 710043, China

2. National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China

Abstract

To assess the probiotic potential of strain 68-1 with rutin conversion capabilities, isolated from Chinese traditional Jiangshui, a complete genomic analysis and in vitro tests were conducted. The Oxford Nanopore Technologies (ONT, Oxford, UK)–Illumina (San Diego, CA, USA) hybrid sequencing platform was used for whole genome sequencing and the results showed that strain 68-1 had a chromosome sequence of 3,482,151 bp, with 46.53% GC content and five plasmids with a sequence length ranging from 2009 bp to 48,711 bp. Strain 68-1 was identified as Lactiplantibacillus pentosus based on the whole genome sequence. A total of 133 genes encoding for carbohydrate-active enzymes (CAZymes) were identified and genes that may be involved in rutin conversion were found in the L. pentosus 68-1 genome. L. pentosus 68-1 showed excellent tolerance to gastrointestinal juice and adhesion properties, and corresponding genes were identified. In addition, L. pentosus 68-1 exhibited strong antibacterial and antifungal activity, where organic acids may play a crucial role in its antagonistic ability. Moreover, the gene cluster for plantaricin_EF production was detected. No high virulence factor was found in the L. pentosus 68-1 genome and no hemolytic effect was observed. In addition, L. pentosus 68-1 showed resistance to ampicillin, gentamycin, and kanamycin, and the genomic analysis indicated that horizontal ARG transfer should not be possible. The results show that L. pentosus 68-1 could be developed as a novel probiotic candidate to improve rutin bioavailability in the food and feed industry.

Funder

the Science and Technology Program of Shaanxi Academy of Sciences

Shaanxi Science and Technology Project

Shaanxi Advanced Program of Scientific and Technological Activities for Returned Overseas Scholars

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3