Statistical Optimization for Cost-Effective Production of Yeast-Bacterium Cell-Bound Lipases Using Blended Oily Wastes and Their Potential Applications in Biodiesel Synthesis and Wastewater Bioremediation

Author:

Fibriana FidiaORCID,Upaichit ApichatORCID,Cheirsilp Benjamas

Abstract

Oily wastes have been widely used to produce lipases, but there is insufficient knowledge on their use to efficiently produce cell-bound lipases (CBLs). This research aimed to optimize yeast–bacterium CBLs production using blended oily wastes by statistical optimization and their potential applications in biodiesel production and wastewater bioremediation. The co-culture of Magnusiomyces spicifer AW2 and Staphylococcus hominis AUP19 produced CBLs as high as 4709 U/L with cell biomass of 23.4 g/L in a two-fold diluted palm oil mill effluent (POME) added by 2.08% (v/v) waste frying oil, 1.72.0% (w/v) ammonium sulfate, 0.1% (w/v) Gum Arabic as an emulsifier (initial pH at 7.0) within 24 h. The CBLs were successfully applied as whole-cell biocatalysts to produce biodiesel through esterification and transesterification with 76% and 87% yields, respectively. Direct application of CBLs for bioremediation of heat-treated various POME concentrations achieved 73.3% oil and grease removal and 73.6% COD removal within 3 days. This study has shown that the blended oily wastes medium was suitable for low-cost production of yeast–bacterium CBLs and their potential applications in solvent-free biodiesel production and wastewater bioremediation. These strategies may greatly contribute to economical green biofuel production and waste biotreatment.

Funder

Overseas Postgraduate Scholarship Program (BPPLN 2019) from the Indonesian Ministry of Education, Culture, Research, and Technology.

Thailand Research Fund

Graduate School, Prince of Songkla University

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3