Increasing the Efficiency of Taxifolin Encapsulation in Saccharomyces cerevisiae Yeast Cells Based on Ultrasonic Microstructuring

Author:

Kalinina IrinaORCID,Fatkullin Rinat,Naumenko Natalya,Ruskina Alena,Popova Natalia,Naumenko Ekaterina

Abstract

The aim of the present study was to investigate the possibility of encapsulating the plant antioxidant taxifolin in the living cells of the yeast Saccharomyces cerevisiae. Taxifolin is an unstable substance prone to oxidative degradation and actively enters into chemical reactions with a decrease or loss of bioactive properties. To minimize these problems, the use of encapsulation technology has been proposed. The cells of the yeast Saccharomyces cerevisiae have been chosen as a protective material for taxifolin. The encapsulation process was carried out using simple diffusion methods in living Saccharomyces cerevisiae cells in a thermostatically controlled shaker for 24 h. The aim of the study was to evaluate the effect of preliminary microstructuring of taxifolin on the efficiency of its encapsulation in yeast cells. The microstructuring process was carried out using low-frequency ultrasonic cavitation exposure for 7 min with a frequency of 22 ± 1.6 kHz and a power of 600 W/100 mL. The studies confirmed the feasibility of the proposed approach. It was found that microstructuring changes the dispersed composition of taxifolin particles and their morphology in solution and also increases the value of the antioxidant activity. Preliminary microstructuring of taxifolin increases the efficiency of its encapsulation in Saccharomyces cerevisiae yeast cells by 1.42 times compared to the initial form. A positive dependence of the growth of the encapsulation efficiency on the duration of the process was also established. Thus, the conducted studies confirmed the advantage of encapsulation of taxifolin in living cells of the yeast Saccharomyces cerevisiae in microstructured form.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3