Biohydrogen Production from Methane-Derived Biomass of Methanotroph and Microalgae by Clostridium

Author:

Sang Yuxuan123,Xie Zhangzhang2,Li Liangyan24,Wang Oumei2,Zheng Shiling1ORCID,Liu Fanghua125ORCID

Affiliation:

1. CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China

2. National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300350, China

5. Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China

Abstract

Methane, a potent greenhouse gas, represents both a challenge and an opportunity in the quest for sustainable energy. This work investigates the biotechnology for converting methane into clean, renewable hydrogen. The co-culture of Chlorella sacchrarophila FACHB 4 and Methylomonas sp. HYX-M1 was demonstrated to completely convert 1 mmol of methane to biomass within 96 h. After acid digestion of such biomass, up to 45.05 μmol of glucose, 4.07 μmol of xylose, and 26.5 μmol of lactic acid were obtained. Both Clostridium pasteurianum DSM525 and Clostridium sp. BZ-1 can utilize those sugars to produce hydrogen without any additional organic carbon sources. The higher light intensity in methane oxidation co-culture systems resulted in higher hydrogen production, with the BZ-1 strain producing up to 14.00 μmol of hydrogen, 8.19 μmol of lactate, and 6.09 μmol of butyrate from the co-culture biomass obtained at 12,000 lux. The results demonstrate that the co-culture biomass of microalgae and methanotroph has the potential to serve as a feedstock for dark fermentative hydrogen production. Our study highlights the complexities inherent in achieving efficient and complete methane-to-hydrogen conversion, positioning this biological approach as a pivotal yet demanding area of research for combating climate change and propelling the global energy transition.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Guangdong Foundation for Program of Science and Technology Research

GDAS’ Project of Science and Technology Development

Pearl River Talent Recruitment Program of Guangdong Province

Taishan Scholar Program of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3