Development of Volatile Fatty Acid and Methane Production Prediction Model Using Ruminant Nutrition Comparison of Algorithms

Author:

Park Myungsun12ORCID,Cho Sangbuem2,Jeon Eunjeong23ORCID,Choi Nag-Jin2ORCID

Affiliation:

1. Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang 25340, Republic of Korea

2. Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea

3. Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA

Abstract

(1) Background: This study explores the correlation between volatile fatty acid (VFA) concentrations and methanogenesis in ruminants, focusing on how the nutritional composition of their diets affects these processes. (2) Methods: We developed predictive models using multiple linear regression, artificial neural networks, and k-nearest neighbor algorithms. The models are based on data extracted from 31 research papers and 16 ruminal in vitro fermentation tests to predict VFA concentrations from nutrient intake. Methane production estimates were derived by converting and clustering these predicted VFA values into molar ratios. (3) Results: This study found that acetate concentrations correlate significantly with neutral detergent fiber intake. Conversely, propionate and butyrate concentrations are highly dependent on dry matter intake. There was a notable correlation between methane production and the concentrations of acetate and butyrate. Increases in neutral detergent fiber intake were associated with higher levels of acetate, butyrate, and methane production. Among the three methods, the k-nearest neighbor algorithm performed best in terms of statistical fitting. (4) Conclusions: It is vital to determine the optimal intake levels of neutral detergent fiber to minimize methane emissions and reduce energy loss in ruminants. The predictive accuracy of VFA and methane models can be enhanced through experimental data collected from diverse environmental conditions, which will aid in determining optimal VFA and methane levels.

Funder

Jeonbuk National University

Publisher

MDPI AG

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3