Abstract
This study aimed to gain insights into the bacterial and fungal microbiota associated with the acetic acid fermentation of tropical grass silage. Direct-cut (DC, 170 g dry matter [DM]/kg) and wilted (WT, 323 g DM/kg) guinea grass were stored in a laboratory silo at moderate (25 °C) and high (40 °C) temperatures. Bacterial and fungal microbiota were assessed at 3 days, 1 month, and 2 months after ensiling. Lactic acid was the primary fermentation product during the initial ensiling period, and a high Lactococcus abundance (19.7–39.7%) was found in DC silage. After two months, the lactic acid content was reduced to a negligible level, and large amounts of acetic acid, butyric acid, and ethanol were found in the DC silage stored at 25 °C. The lactic acid reduction and acetic acid increase were suppressed in the DC silage stored at 40 °C. Increased abundances of Lactobacillus, Clostridium, and Wallemia, as well as decreased abundances of Saitozyma, Papiliotrema, and Sporobolomyces were observed in DC silages from day three to the end of the 2 month period. Wilting suppressed acid production, and lactic and acetic acids were found at similar levels in WT silages, regardless of the temperature and storage period. The abundance of Lactobacillus (1.72–8.64%) was lower in WT than in DC silages. The unclassified Enterobacteriaceae were the most prevalent bacteria in DC (38.1–64.9%) and WT (50.9–76.3%) silages, and their abundance was negatively related to the acetic acid content. Network analysis indicated that Lactobacillus was involved in enhanced acetic acid fermentation in guinea grass silage.
Funder
Japan Society for the Promotion of Science
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献