The Effect of E. coli Uridine-Cytidine Kinase Gene Deletion on Cytidine Synthesis and Transcriptome Analysis

Author:

Liu FengminORCID,Ye Tong,Zhang Xiangjun,Ma Cong,Liu Huiyan,Fang HaitianORCID

Abstract

Cytidine is an antiviral and anticancer drug intermediate, its primary method of manufacture being fermentation. Uridine-cytidine kinase (UCK) catalyzes the reverse process of phosphorylation of cytidine to produce cytidylic acid, which influences cytidine accumulation in the Escherichia coli cytidine biosynthesis pathway. The cytidine-producing strain E. coli NXBG-11 was used as the starting strain in this work; the udk gene coding UCK was knocked out of the chromosomal genome using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology. The mutant strain E. coli NXBG-12 was obtained; its transcriptomics were studied to see how udk gene deletion affected cytidine synthesis and cell-wide transcription. The mutant strain E. coli NXBG-12 generated 1.28 times more cytidine than the original strain E. coli NXBG-11 after 40 h of shake-flask fermentation at 37 °C. The udk gene was knocked out, and transcriptome analysis showed that there were 1168 differentially expressed genes between the mutant and original strains, 559 upregulated genes and 609 downregulated genes. It was primarily shown that udk gene knockout has a positive impact on the cytidine synthesis network because genes involved in cytidine synthesis were significantly upregulated (p < 0.05) and genes related to the cytidine precursor PRPP and cofactor NADPH were upregulated in the PPP and TCA pathways. These results principally demonstrate that udk gene deletion has a favorable impact on the cytidine synthesis network. The continual improvement of cytidine synthesis and metasynthesis is made possible by this information, which is also useful for further converting microorganisms that produce cytidine.

Funder

National Natural Science Foundation of China

Ningxia Hui Autonomous Region Youth Top Talent Training Project

Ningxia Key Laboratory of Food Microbial Application Technology and Safety Control Platform Construction Project

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3