Analysis of the Comparative Growth Kinetics of Paenarthrobacter ureafaciens YL1 in the Biodegradation of Sulfonamide Antibiotics Based on Substituent Structures and Substrate Toxicity

Author:

Yu Lan,Wang YingningORCID,Xin Junjie,Ma Fang,Guo Haijuan

Abstract

The high consumption and emission of sulfonamide antibiotics (SAs) have a considerable threat to humans and ecosystems, so there is a need to develop safer and more effective methods than conventional strategies for the optimal removal of these compounds. In this study, four SAs with different substituents, sulfadiazine (SDZ), sulfamerazine (SMR), sulfamethoxazole (SMX), and sulfamethazine (SMZ) were removed by a pure culture of Paenarthrobacter ureafaciens YL1. The effect of the initial SAs concentration on the growth rate of strain YL1 was investigated. The results showed that the strain YL1 effectively removed various SAs in the concentration range of 0.05–2.4 mmol·L−1. The Haldane model was used to perform simulations of the experimental data, and the regression coefficient of the model indicated that the model had a good predictive ability. During SAs degradation, the maximum specific growth rate of strain YL1 was ranked as SMX > SDZ > SMR > SMZ with constants of 0.311, 0.304, 0.302, and 0.285 h−1, respectively. In addition, the biodegradation of sulfamethoxazole (SMX) with a five-membered substituent was the fastest, while the six-membered substituent of SMZ was the slowest based on the parameters of the kinetic equation. Also, density functional theory (DFT) calculations such as frontier molecular orbitals (FMOs), and molecular electrostatic potential map analysis were performed. It was evidenced that different substituents in SAs can affect the molecular orbital distribution and their stability, which led to the differences in the growth rate of strain YL1 and the degradation rate of SAs. Furthermore, the toxicity of P. ureafaciens is one of the crucial factors affecting the biodegradation rate: the more toxic the substrate and the degradation product are, the slower the microorganism grows. This study provides a theoretical basis for effective bioremediation using microorganisms in SAs-contaminated environments.

Funder

Key Laboratory of Urban Water Resource and Environment

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Reference49 articles.

1. Anaerobic biodegradation of four sulfanilamide antibiotics: Kinetics, pathways and microbiological studies;Wang;J. Hazard. Mater.,2021

2. Occurrence, fate and removal of pharmaceuticals, personal care products and pesticides in wastewater stabilization ponds and receiving rivers in the nzoia basin, kenya;Kandie;Sci. Total Environ.,2018

3. Pharmaceuticals, illicit drugs and their metabolites in fish from argentina: Implications for protected areas influenced by urbanization;Ondarza;Sci. Total Environ.,2019

4. Unravelling kinetic and microbial responses of enriched nitrifying sludge under long-term exposure of cephalexin and sulfadiazine;Wang;Water Res.,2020

5. Dissipation of antibiotics by microalgae: Kinetics, identification of transformation products and pathways;Kiki;J. Hazard. Mater.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3