Effect of Source and Level of Dietary Supplementary Copper on In Vitro Rumen Fermentation in Growing Yaks

Author:

Zhao XinshengORCID,Hao Lizhuang,Xue YanfengORCID,Degen AllanORCID,Liu Shujie

Abstract

Copper (Cu) is essential for the health of livestock, however, the optimal source and level of dietary Cu for yaks are uncertain. To fill this important gap, we designed an in vitro study to examine the effects of three Cu sources, namely Cu methionine (Met-Cu), Cu chloride (CuCl2) and tribasic Cu chloride (TBCC), at five levels, namely 5, 10, 15, 20 and 25 mg/kg DM (includes Cu in substrate), on rumen fermentation in yaks. In vitro dry matter degradability (IVDMD) and amylase activity were greater (p < 0.05) with added Met-Cu than the other two Cu sources, and ammonia nitrogen (NH3-N), microbial protein (MCP) and propionate contents were greater with Met-Cu and CuCl2 than with TBCC. Total gas production and lipase activity were greater with Met-Cu and TBCC than CuCl2 (p < 0.05), which meant that the metabolizable energy yield was greater in the two former Cu sources than the latter, but CH4 production did not differ (p = 0.92) among Cu sources. IVDMD and lipase activity were greatest (p < 0.05) at 15 mg Cu/kg DM in the substrate and MCP, isobutyrate, butyrate and isovalerate contents, and amylase and trypsin activities were greatest or second greatest at 10 and 15 mg Cu/kg DM. It was concluded that Met-Cu was the best source of Cu and 10 to 15 mg Cu/kg DM was the optimal level for yaks, at least under in vitro conditions.

Funder

National Natural Science Foundation of China

Qinghai Province Key R&D and Transformation Program

Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province

Top Talent project of “Kunlun Talents–High-level Innovation and Entrepreneurship Talents” in Qinghai Province

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3