Synthesis, Characterization, Antibacterial, Antifungal, Antioxidant, and Anticancer Activities of Nickel-Doped Hydroxyapatite Nanoparticles

Author:

Sebastiammal Saleth,Fathima Arul Sigamani Lesly,Henry Johnson,Wadaan Mohammad Ahmad,Mahboob ShahidORCID,Wadaan Arwa Mohammad,Manzoor IrfanORCID,Gopinath Kasi,Rajeswary Mohan,Govindarajan MarimuthuORCID

Abstract

The purpose of this research was to investigate the possible antibacterial, antifungal, antioxidant, and anticancer effects of nickel (Ni2+)-doped hydroxyapatite (HAp) nanoparticles (NPs) synthesized using the sol–gel approach. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (Raman), field-emission scanning electron microscopy (FESEM), and elemental analysis were used to characterize the Ni2+-doped HApNPs. X-ray diffraction investigation showed that the nanoscale structure of Ni2+-doped HApNPs was hexagonal, with an average crystallite size of 39.91 nm. Ni2+-doped HApNPs were found to be almost spherical in form and 40–50 nm in size, as determined by FESEM analysis. According to EDAX, the atomic percentages of Ca, O, P, and Ni were 20.93, 65.21, 13.32, and 0.55, respectively. Ni2+-doped HApNPs exhibited substantial antibacterial properties when tested in vitro against several pathogens, including Escherichia coli, Shigella flexneri, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Antibacterial activity, at 50 mg tested concentration, demonstrated superior effects on G-ve bacteria than G+ve pathogens. The antifungal activity of Oidium caricae, Aspergillus flavus, and A. niger revealed a zone of inhibition of 23, 11, and 5 mm, respectively. These actions rely on the organism’s cell wall structure, size, and shape. Incorporating Ni2+ into HApNPs allows them to function as powerful antioxidants. Ni2+-doped HApNPs had a good cytotoxic impact against the HeLa cell line, which improved with increasing concentration and was detected at a 68.81 µg/mL dosage. According to the findings of this study, the Ni2+-doped HApNPs are extremely promising biologically active candidates owing to their improved functional features.

Funder

King Saud University

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3