Abstract
Spontaneous fermentation of table olives, as per a traditional Mediterranean process, is still performed empirically; hence, final product quality is somewhat unpredictable. Our main goal was to validate an endogenous (potentially probiotic) lactic acid bacterium strain in Cobrançosa table olives as a vector for a more standardized process, further adding commercial value to the olives themselves. The traditional Portuguese fermentation process typically consists of two stages: sweetening, when olives are periodically washed with spring water to different proportions, and salting, when water is no longer changed, but salt is gradually added to the brine, up to 7–10% (w/w). Lactiplantibacillus pentosus i106 was inoculated as follows: (plan A) 2020/21 harvest, with 0, 3, 5, and 7% (w/v) NaCl, without sweetening; (plan B) 2020/21 harvest, with 5 and 7% (w/v) NaCl, during salting and sweetening; and (plan C) 2019/20 harvest, with 5% (w/v) salt, and sweetening and salting. Microbiological, physical, and biochemical evolutions were monitored for 8 months, and final nutritional and sensory features were duly assessed. Compared to the control, lactic acid bacteria (LAB) predominated over yeasts only if deliberately inoculated; however strain viability was hindered above 5% (w/w) NaCl, and LAB inhibited enterobacteria. Degradation of (bitter) oleuropein to hydroxytyrosol and verbascoside was faster upon inoculation. Color-changing olives from the 2020/21 harvest exhibited higher fat content and lower water content compared to green ones (2019/20 harvest), and different salt levels and inoculation moments produced distinct sensory properties. The best protocol was plan C, in terms of overall eating quality; hence, the addition of Lpb. pentosus i106 provides benefits as a supplementary additive (or adjunct culture), rather than a starter culture.
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science
Reference45 articles.
1. Perpetuini, G., Prete, R., Garcia-Gonzalez, N., Khairul Alam, M., and Corsetti, A. (2020). Table olives more than a fermented food. Foods, 9.
2. An overview of Portuguese olive oils and table olives with Protected Designation of Origin;Albuquerque;Eur. J. Lipid Sci. Technol.,2019
3. The use of multifunctional yeast-lactobacilli starter cultures improves fermentation performance of Spanish-style green table olives;Food Microbiol.,2020
4. Technologies and trends to improve table olive quality and safety;Campus;Front. Microbiol.,2018
5. Portilha-Cunha, M.F., Macedo, A.C., and Malcata, F.X. (2020). A review on adventitious lactic acid bacteria from table olives. Foods, 9.