Effect of Complex Prebiotics on the Intestinal Colonization Ability of Limosilactobacillus fermentum DALI02

Author:

Liu Xiaoxiao,Chen Dawei,Li Qiming,Zhang Chenchen,Zhang LongfeiORCID,Qu HengxianORCID,Wang Wenqiong,Zhou Yuanyuan,Huang Yujun,Xiao Lixia,Gu Ruixia

Abstract

Intestinal colonization is beneficial to the role of probiotics, and prebiotics can promote the adhesion and colonization of probiotics in the intestine. This study optimized the combination of complex prebiotics that could improve the growth ability and adhesion ability of Limosilactobacillus fermentum (L. fermentum) DALI02 to Caco-2 cells in vitro and determined the effect of its colonization quantity and colonization time in the immunocompromised rat model. The results showed that all five prebiotics (fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), inulin, stachyose, and xylo-oligosaccharides (XOS)) significantly promoted the growth and adhesion of L. fermentum DALI02. It was found that 0.5% (w/w) inulin had the best growth promotion effect, and 0.5% FOS had the strongest adhesion promotion (the adhesion rate was increase by 1.75 times). In addition, 0.05% FOS, 0.20% GOS, 0.30% inulin, 0.20% stachyose, and 0.30% XOS could significantly improve the adhesion rate of L. fermentum DALI02 from 1.72% to 3.98%. After 1 w of intervention, the quantity of colonization in the fermented broth with prebiotics group was significantly higher than that in the fermented broth group. The intervention time was extended from 1 d to 4 w, and the amount of colonization of L. fermentum DALI02 in the fermented broth with prebiotics group increased significantly from 4.32 lgcopies/g to 5.12 lgcopies/g. After the intervention, the serum levels of lipopolysaccharide (LPS) and D-lactic acid in rats were significantly reduced, and the most significant was in the fermented broth with prebiotics group, with LPS and D-lactic acid levels of 74.11 pg/mL and 40.33 μmol/L, respectively. Complex prebiotics can promote the growth and adhesion of L. fermentum DALI02 and significantly increase the quantity of colonization and residence time of the strain in the intestine, which helps the restoration of intestinal barrier function and other probiotic effects.

Funder

National Natural Science Foundation of China

Science and Technology Plan Project of Jiangsu Provincial Market Supervision Administration

City-school cooperation to build science and Technology Innovation Platform

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3