Effect of Condensed Tannins on Nitrogen Distribution and Metabolome after Aerobic Exposure of Sainfoin Silage

Author:

Huang Rongzheng1ORCID,Zhang Fanfan1,Wang Xuzhe1,Ma Chunhui1

Affiliation:

1. Grassland Science, School of Animal Technology, Shihezi University, Shihezi 832000, China

Abstract

(1) Background: Previous studies have indicated that proteolysis is inhibited by the condensed tannins (CTs) that are present during sainfoin ensiling. Whether inhibiting this effect of CTs on proteolysis is functional during aerobic exposure is still unclear. (2) Methods: the present study investigated the effect of CTs on metabolite composition during the aerobic exposure of sainfoin silage via the use of polyethylene glycol (PEG), leading to the inactivation of CTs. (3) Results: The neutral detergent-insoluble protein (NDIP) and acid detergent-insoluble protein concentrations were both more concentrated in the control group than in the PEG-treated group. There were 587 and 651 different metabolites present in the control and PEG-treated groups after 3 and 7 days, respectively, of aerobic exposure of silage. Flavonoids (72 metabolites) were the most abundant among these different metabolites. The addition of PEG upregulated histidine, threonine, asparagine, tryptophan, and glutamine, but downregulated phenylalanine. The relative abundances of Lactococcus, Fructobacillus, Enterobacter, Cutibacterium, Citrobacter, and Rosenbergiella differed significantly between the control and PEG-treated groups (p < 0.05); all of these bacteria showed significant correlation with some of the 50 most abundant metabolites. (4) Conclusions: the results suggest that the antioxidant status of the silage increased and inhibited the activity of a variety of bacteria that coexist with CTs, and decreased the production of certain amino acids after the aerobic exposure of silage.

Funder

National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3