Optimization of 2-Phenylethanol Production from Sweet Whey Fermentation Using Kluyveromyces marxianus

Author:

Alonso-Vargas Monserrat,Téllez-Jurado Alejandro,Gómez-Aldapa Carlos A.ORCID,Ramírez-Vargas María del Rocío,Conde-Báez LauraORCID,Castro-Rosas JavierORCID,Cadena-Ramírez Arturo

Abstract

The growing demand for natural products benefits the development of bioprocesses to obtain value-added compounds using residues such as sweet whey, which is rich in lactose. The yeast Kluyveromyces marxianus can ferment sweet whey to obtain 2-phenylethanol (2-PhEtOH), which is a superior alcohol with a rose aroma. Such fermentation only requires the addition of L-phenylalanine (precursor) and (NH4)2SO4 (salt). Therefore, it was sought to improve the fermentation conditions to produce 2-PhEtOH, which, in turn, would achieve the maximum decrease in the Chemical Oxygen Demand (COD) of the fermentation medium. With the use of the Response Surface Methodology and the application of a Central Composite Design for optimization, two parameters were evaluated as a function of time: salt concentration and precursor. The experimental data were adjusted to a second order polynomial, identifying that the precursor concentration presents a statistically significant effect. The best conditions were: 4.50 g/L of precursor and 0.76 g/L of salt, with a maximum production of 1.2 g/L (2-PhEtOH) at 48 h and achieving a maximum percentage of COD removal of 76% at 96 h. Finally, the optimal conditions were experimentally validated, recommending the use of the model.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Reference32 articles.

1. Medium optimization for the production of the aroma compound 2-phenylethanol using a genetic algorithm

2. Bioethanol production from agricultural wastes: An overview

3. Production of 2-phenylethanol by microbial mixed cultures allows resource recovery of cane molasses wastewater;Mu;Fresen Environ. Bull.,2014

4. Production of food aroma compounds: Microbial and enzymatic methodologies;Longo;Food Technol. Biotechnol.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3