Enhancing Biodegradation of Pyridine with Trehalose Lipid in Rhodococcus pyridinivorans sp. Strain HR-1-Inoculated Microbial Fuel Cell

Author:

Cheng Peng1,Usman Muhammad2ORCID,Arslan Muhammad2ORCID,Sun Huanqing3,Zhou Li1ORCID,Gamal El-Din Mohamed2ORCID

Affiliation:

1. Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China

2. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AL T6G 1H9, Canada

3. Department of Biology, Hengshui University, Hengshui 053000, China

Abstract

A Gram-positive exoelectrogen Rhodococcus pyridinivorans sp. strain HR-1 was cultivated from leachate-fed microbial fuel cell (MFC) to study the biodegradation effect of pyridine. In the comparison with mixed cultured MFC, HR-1 presented a remarkable electrical capacity with a maximum output of 4.33 W/m3 under 30 °C in neutral anolyte with 1 g/L acetate as a substrate. Further, HR-1 demonstrated the environmental resistance as a Gram-positive strain. Microbial metabolism was evident at pH between 5–9 and temperature in the range of 20–40 °C, whereas optimal condition for pyridine degradation was observed at 30 °C. This is the first study reporting the degradation of pyridine in the bio-electrochemical system that achieved a 42% ± 5% degradation rate in a full operation cycle at 2 g/L of the concentration. Considering the nonnegligible internal resistance of HR-1-inoculated MFC, trehalose lipid was also introduced as a bio-surfactant to reduce the charge transfer obstacle between the microbes and the electrodes. The surface morphology illustrated that the strain had a plump shape with a high specific area. Accordingly, bio-surfactant addition promoted the anode biomass (1.2 ± 0.1 mg/cm2 to 1.7 ± 0.2 mg/cm2) and achieved a higher degradation rate (68% ± 4%). The feasibility of electrochemical disposal on pyridine and eminent adaptability of strain sp. HR-1 as a Gram-positive exoelectrogen makes MFC a practical approach for real application.

Funder

Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant

Canada First Research Excellence Fund

National Natural Science Funds of China

Natural Science Funds of Guangdong Province

Guangzhou Municipal Science and Technology Project

Postdoctoral Science Foundation, China

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3