Abstract
Fucoidan, a marine-sulfated polysaccharide derived from brown algae, has been recently spotlighted as a natural biomaterial for use in bone formation and regeneration. Current research explores the osteoinductive and osteoconductive properties of fucoidan-based composites for bone tissue engineering applications. The utility of fucoidan in a bone tissue regeneration environment necessitates a better understanding of how fucoidan regulates osteogenic processes at the molecular level. Therefore, this study designed a fucoidan and polydopamine (PDA) composite-based film for use in a culture platform for periodontal ligament stem cells (PDLSCs) and explored the prominent molecular pathways induced during osteogenic differentiation of PDLSCs through transcriptome profiling. Characterization of the fucoidan/PDA-coated culture polystyrene surface was assessed by scanning electron microscopy and X-ray photoelectron spectroscopy. The osteogenic differentiation of the PDLSCs cultured on the fucoidan/PDA composite was examined through alkaline phosphatase activity, intracellular calcium levels, matrix mineralization assay, and analysis of the mRNA and protein expression of osteogenic markers. RNA sequencing was performed to identify significantly enriched and associated molecular networks. The culture of PDLSCs on the fucoidan/PDA composite demonstrated higher osteogenic potency than that on the control surface. Differentially expressed genes (DEGs) (n = 348) were identified during fucoidan/PDA-induced osteogenic differentiation by RNA sequencing. The signaling pathways enriched in the DEGs include regulation of the actin cytoskeleton and Ras-related protein 1 and phosphatidylinositol signaling. These pathways represent cell adhesion and cytoskeleton organization functions that are significantly involved in the osteogenic process. These results suggest that a fucoidan/PDA composite promotes the osteogenic potential of PDLSCs by activation of critical molecular pathways.
Funder
National Research Foundation of Korea
Subject
Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献