Derivative-Free Multiobjective Trust Region Descent Method Using Radial Basis Function Surrogate Models

Author:

Berkemeier ManuelORCID,Peitz SebastianORCID

Abstract

We present a local trust region descent algorithm for unconstrained and convexly constrained multiobjective optimization problems. It is targeted at heterogeneous and expensive problems, i.e., problems that have at least one objective function that is computationally expensive. Convergence to a Pareto critical point is proven. The method is derivative-free in the sense that derivative information need not be available for the expensive objectives. Instead, a multiobjective trust region approach is used that works similarly to its well-known scalar counterparts and complements multiobjective line-search algorithms. Local surrogate models constructed from evaluation data of the true objective functions are employed to compute possible descent directions. In contrast to existing multiobjective trust region algorithms, these surrogates are not polynomial but carefully constructed radial basis function networks. This has the important advantage that the number of data points needed per iteration scales linearly with the decision space dimension. The local models qualify as fully linear and the corresponding general scalar framework is adapted for problems with multiple objectives.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

Reference58 articles.

1. Multicriteria Optimization;Ehrgott,2005

2. Vector Optimization: Theory, Applications, and Extensions;Jahn,2011

3. Nonlinear Multiobjective Optimization;Miettinen,2013

4. Twenty Years of Continuous Multiobjective Optimizationhttp://www.optimization-online.org/DB_FILE/2020/12/8161.pdf

5. Adaptive Scalarization Methods in Multiobjective Optimization

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3