Load Direction-Dependent Influence of Forming-Induced Initial Damage on the Fatigue Performance of 16MnCrS5 Steel

Author:

Moehring KerstinORCID,Walther FrankORCID

Abstract

Forming processes influence the mechanical properties of manufactured workpieces in general and by means of forming-induced initial damage in particular. The effect of the latter on performance capability is the underlying research aspect for the investigations conducted. In order to address this aspect, fatigue tests under compressive, tensile and compressive-tensile loads were set-up with discrete block-by-block increased amplitudes and constant amplitudes, and performed up to fracture or distinct lifetimes. Aiming at the correlation of the macroscale mechanical testing results at the mesoscale, intensive metallographic investigations of cross-sections using the microscopical methods of secondary electron analysis, energy dispersive spectroscopy and electron backscatter diffraction were performed. Thereby, the correlation of forming-induced initial damage and fatigue performance was determined, the relevance of compressive loads for the cyclic damage evolution was shown, and material anisotropy under compressive loads was indicated. Finally, the need was addressed to perform further investigations regarding crack propagations and crack arrest investigations in order to clarify the mechanism by which initial damage affects cyclic damage evolution. The relevance of the principal stress axis relative to the extrusion direction was emphasized and used as the basis of an argument for investigations under load paths with different stress directions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3