Breathing Planet Earth: Analysis of Keeling’s Data on CO2 and O2 with Respiratory Quotient (RQ), Part I: Global Respiratory Quotient (RQGlob) of Earth

Author:

Annamalai Kalyan1ORCID

Affiliation:

1. J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, USA

Abstract

In biology, respiratory quotient (RQ) is defined as the ratio of CO2 moles produced per mole of oxygen consumed. Recently, Annamalai et al. applied the RQ concept to engineering literature to show that CO2 emission in Giga Tons per Exa J of energy = 0.1 ∗ RQ. Hence, the RQ is a measure of CO2 released per unit of energy released during combustion. Power plants on earth use a mix of fossil fuels (FF), and the RQ of the mix is estimated as 0.75. Keeling’s data on CO2 and O2 concentrations in the atmosphere (abbreviated as atm., 1991–2018) are used to determine the average RQGlob of earth as 0.47, indicating that 0.47 “net” moles of CO2 are added to which means that there is a net loss of 5.6 kg C(s) from earth per mole of O2 depleted in the absence of sequestration, or the mass loss rate of earth is estimated at 4.3 GT per year. Based on recent literature on the earth’s tilt and the amount of water pumped, it is speculated that there could be an additional tilt of 2.7 cm over the next 17 years. While RQ of FF, or biomass, is a property, RQGlob is not. It is shown that the lower the RQGlob, the higher the acidity of oceans, the lesser the CO2 addition to atm, and the lower the earth’s mass loss. Keeling’s saw-tooth pattern of O2 is predicted from known CO2 data and RQGlob. In Part II, the RQ concept is expanded to define energy-based RQGlob,En, and adopt the CO2 and O2 balance equations, which are then used in developing the explicit relations for CO2 distribution amongst atm., land, and ocean, and the RQ-based results are validated with results from more detailed literature models for the period 1991–2018.

Funder

Paul Pepper Professorship

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference97 articles.

1. (2022, September 08). Available online: https://www.biologyonline.com/dictionary/life.

2. (2021, December 22). Available online: https://www.cropnutrition.com/nutrient-knowledge/oxygen.

3. (2022, November 08). Available online: https://greencover.com/category/seed-production/.

4. (2023, October 24). Available online: https://archive.ipcc.ch/ipccreports/sres/land_use/index.php?idp=24.

5. Boden, T.A., Marland, G., and Andres, R.J. (2010). Global, Regional, and National Fossil-Fuel CO2 Emissions, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3