Rainwater Harvesting System for Industrial Buildings: The Case Study of Continental Advanced Antenna, Vila Real, Portugal

Author:

Matos Cristina12ORCID,Bentes Isabel13ORCID,Santos Cristina24ORCID

Affiliation:

1. ECT—School of Science and Technology, University of Trás-os-Montes and Alto Douro UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal

2. CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4099-002 Porto, Portugal

3. C-Made—Center of Materials and Building Technologies, UBI/UTAD, 6201-001 Covilhã, Portugal

4. Faculty of Engineering, University of Porto, 4099-002 Porto, Portugal

Abstract

Large industrial units generally consume considerable volumes of water for use by workers and sometimes in the manufacturing process, but on the other hand, they generally have large coverage areas that facilitate and enable the capture of large quantities of rainwater. Rainwater harvesting systems (RWHSs) are an alternative water supply with high potential for significant water and economic savings in buildings of this type, also with benefits for water resource sustainability. This paper presents a case study that refers to the design and economic viability determination of an RWHS to be installed in the industrial building of Continental Advanced Antenna Portugal, using an innovative tool called SAPRA—a rainwater harvesting and greywater reuse system in buildings. The main goal was to understand water consumption patterns in social areas (common to most of the industrial typologies) and determine whether RWHSs are feasible in such uses (discarding the production chain). The case study allowed for verification that the assumptions regarding the calculation period design flow significantly interfere with the design flow and the storage capacity. The analysis of the 10-year period yields the most realistic results, and can be framed, if necessary, within the range provided by the analysis of the driest and wettest years. The investment costs should between EUR 90 and 95 million, with annual savings of EUR 7 to 12 million, respectively. The expected payback period is between 7 and 11 years, which is quite feasible and very relevant. This may be an excellent example of how, even within the industries that do not need water for production, this may save significant volumes of water, contributing to the efficient use of this valuable resource.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3