Abstract
Node embedding is a representation learning technique that maps network nodes into lower-dimensional vector space. Embedding nodes into vector space can benefit network analysis tasks, such as community detection, link prediction, and influential node identification, in both calculation and richer application scope. In this paper, we propose a two-step node embedding-based solution for the social influence maximization problem (IMP). The solution employs a revised network-embedding algorithm to map input nodes into vector space in the first step. In the second step, the solution clusters the vector space nodes into subgroups and chooses the subgroups’ centers to be the influential spreaders. The proposed approach is a simple but effective IMP solution because it takes both the social reinforcement and homophily characteristics of the social network into consideration in node embedding and seed spreaders selection operation separately. The information propagation simulation experiment of single-point contact susceptible-infected-recovered (SIR) and full-contact SIR models on six different types of real network data sets proved that the proposed social influence maximization (SIM) solution exhibits significant propagation capability.
Funder
the Fundamental Research Funds for the Central Universities
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献