An Improved Lightweight User Authentication Scheme for the Internet of Medical Things

Author:

Kim KeunokORCID,Ryu JihyeonORCID,Lee Youngsook,Won Dongho

Abstract

The Internet of Medical Things (IoMT) is used in the medical ecosystem through medical IoT sensors, such as blood glucose, heart rate, temperature, and pulse sensors. To maintain a secure sensor network and a stable IoMT environment, it is important to protect the medical IoT sensors themselves and the patient medical data they collect from various security threats. Medical IoT sensors attached to the patient’s body must be protected from security threats, such as being controlled by unauthorized persons or transmitting erroneous medical data. In IoMT authentication, it is necessary to be sensitive to the following attack techniques. (1) The offline password guessing attack easily predicts a healthcare administrator’s password offline and allows for easy access to the healthcare worker’s account. (2) Privileged-insider attacks executed through impersonation are an easy way for an attacker to gain access to a healthcare administrator’s environment. Recently, previous research proposed a lightweight and anonymity preserving user authentication scheme for IoT-based healthcare. However, this scheme was vulnerable to offline password guessing, impersonation, and privileged insider attacks. These attacks expose not only the patients’ medical data such as blood pressure, pulse, and body temperature but also the patients’ registration number, phone number, and guardian. To overcome these weaknesses, in the present study we propose an improved lightweight user authentication scheme for the Internet of Medical Things (IoMT). In our scheme, the hash function and XOR operation are used for operation in low-spec healthcare IoT sensor. The automatic cryptographic protocol tool ProVerif confirmed the security of the proposed scheme. Finally, we show that the proposed scheme is more secure than other protocols and that it has 266.48% better performance than schemes that have been previously described in other studies.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Securing Cloud-based Healthcare Applications with a Quantum-resistant Authentication and Key Agreement Framework;Internet of Things;2024-07

2. A secure user authentication scheme for crypto-wallet in IoT environment;Peer-to-Peer Networking and Applications;2024-06-13

3. Artificial Intelligence-Enabled Internet of Medical Things (AIoMT) in Modern Healthcare Practices;Advances in Medical Technologies and Clinical Practice;2024-06-07

4. Protecting Patient Privacy and Data Integrity With DAG Technology for IoMT and EHR: A Systematic Review;2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET);2024-05-16

5. Lightweight Hash-Based Authentication Protocol for Smart Grids;Sensors;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3