A Novel Method for Growing α-Ga2O3 Films Using Mist-CVD Face-to-face Heating Plates

Author:

Zuo YanORCID,Feng Qian,Zhang Tao,Tian Xusheng,Li Wenji,Li Jiale,Zhang ChunfuORCID,Zhang Jincheng,Hao Yue

Abstract

In this paper, the method for growing α-Ga2O3 films on c-plane sapphire substrates using an inexpensive fine-channel mist-CVD face-to-face heating plate was investigated. Because high temperatures can result in reactor deformation, expensive AlN ceramics resistant to deformation are used as the reactor fabrication material in traditional fine-channel mist-CVD equipment, which limits its use for promotion and research purposes. In this work, we used a face-to-face heating method to replace the traditional single-sided heating method which will reduce the requirement for equipment sealability. Therefore, cheap quartz can be used to replace expensive AlN ceramics to make reactors, which can greatly reduce the cost of mist-CVD equipment. We also investigated the effects of substrate temperature and carrier gas on the crystalline quality and surface morphology of α-Ga2O3 films. By optimizing the fabrication conditions, we obtained triangular grains with edges that were clearly visible in atomic force microscopy images. Using absorption spectrum analysis, we also found that the optical bandgap of the film reached 5.24 eV. Finally, we recorded a value of 508 arcsec for the full width at half maximum of the α-Ga2O3 (0006) diffraction peak in the X-ray diffraction pattern.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3