Silicon Nanowire-Assisted High Uniform Arrayed Waveguide Grating

Author:

Yuan Shuo,Feng JijunORCID,Yu ZhihengORCID,Chen Jian,Liu Haipeng,Chen Yishu,Guo Song,Huang Fengli,Akimoto Ryoichi,Zeng HepingORCID

Abstract

Determining how to improve the non-uniformity of arrayed waveguide grating (AWG) is of great significance for dense wavelength division multiplexing (DWDM) systems. In this work, a silicon nanowire-assisted AWG structure is proposed, which can achieve high uniformity with a low insertion loss. The article compares the effect of nanowire number and shape on uniformity and insertion loss, finding that double nanowires provide the best performance. Double nanowires with a width of 230 nm and length of 3.5 μm can consist of a slot configuration between arrayed waveguides, both connecting to the star coupler and spacing 165 nm from the waveguides. Compared with conventional 8- and 16-channel AWGs with channel spacing of 200 GHz, the non-uniformity of the presented structure can be improved from 1.09 and 1.6 dB to 0.24 and 0.63 dB, respectively. The overall footprint of the device would remain identical, which is 276 × 299 or 258 × 303 μm2 for the 8- or 16-channel AWG. The present high uniformity design is simple and easy to fabricate without any additional insertion loss, which is expected to be widely applied in the highly integrated DWDM systems.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3