Effect of Ambient Plasma Treatments on Thermal Conductivity and Fracture Toughness of Boron Nitride Nanosheets/Epoxy Nanocomposites

Author:

Choi Won-Jong,Lee Seul-Yi,Park Soo-Jin

Abstract

With the rapid growth in the miniaturization and integration of modern electronics, the dissipation of heat that would otherwise degrade the device efficiency and lifetime is a continuing challenge. In this respect, boron nitride nanosheets (BNNS) are of significant attraction as fillers for high thermal conductivity nanocomposites due to their high thermal stability, electrical insulation, and relatively high coefficient of thermal conductivity. Herein, the ambient plasma treatment of BNNS (PBNNS) for various treatment times is described for use as a reinforcement in epoxy nanocomposites. The PBNNS-loaded epoxy nanocomposites are successfully manufactured in order to investigate the thermal conductivity and fracture toughness. The results indicate that the PBNNS/epoxy nanocomposites subjected to 7 min plasma treatment exhibit the highest thermal conductivity and fracture toughness, with enhancements of 44 and 110%, respectively, compared to the neat nanocomposites. With these enhancements, the increases in surface free energy and wettability of the PBNNS/epoxy nanocomposites are shown to be attributable to the enhanced interfacial adhesion between the filler and matrix. It is demonstrated that the ambient plasma treatments enable the development of highly dispersed conductive networks in the PBNNS epoxy system.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korea government

Ministry of Trade, Industry & Energy

Korea Initiative for Fostering University of Research and Innovation (KIURI) Program of the National Research Foundation (NRF) funded by the Korean government

Ministry of SMEs and Startups

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference71 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3