CFD Development of a Silica Membrane Reactor during HI Decomposition Reaction Coupling with CO2 Methanation at Sulfur–Iodine Cycle

Author:

Alinejad Milad Mohammad,Ghasemzadeh Kamran,Iulianelli AdolfoORCID,Liguori Simona,Ghahremani Milad

Abstract

In this work, a novel structure of a hydrogen-membrane reactor coupling HI decomposition and CO2 methanation was proposed, and it was based on the adoption of silica membranes instead of metallic, according to their ever more consistent utilization as nanomaterial for hydrogen separation/purification. A 2D model was built up and the effects of feed flow rate, sweep gas flow rate and reaction pressure were examined by CFD simulation. This work well proves the feasibility and advantage of the membrane reactor that integrates HI decomposition and CO2 methanation reactions. Indeed, two membrane reactor systems were compared: on one hand, a simple membrane reactor without proceeding towards any CO2 methanation reaction; on the other hand, a membrane reactor coupling the HI decomposition with the CO2 methanation reaction. The simulations demonstrated that the hydrogen recovery in the first membrane reactor was higher than the methanation membrane reactor. This was due to the consumption of hydrogen during the CO2 methanation reaction, occurring in the permeate side of the second membrane reactor system, which lowered the amount of hydrogen recovered in the outlet streams. After model validation, this theoretical study allows one to evaluate the effect of different operating parameters on the performance of both the membrane reactors, such as the pressure variation between 1 and 5 bar, the feed flow rate between 10 and 50 mm3/s and the sweep gas flow rate between 166.6 and 833.3 mm3/s. The theoretical predictions demonstrated that the best results in terms of HI conversion were 74.5% for the methanation membrane reactor and 67% for the simple membrane reactor.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3