Machine Learning-Assisted Dual-Marker Detection in Serum Small Extracellular Vesicles for the Diagnosis and Prognosis Prediction of Non-Small Cell Lung Cancer

Author:

Li WenzheORCID,Zhu LingORCID,Li Kaidi,Ye Siyuan,Wang Huayi,Wang Yadong,Xue Jianchao,Wang Chen,Li ShanqingORCID,Liang Naixin,Yang YanlianORCID

Abstract

Small extracellular vesicles (sEVs) carry molecular information from their source cells and are desired biomarkers for cancer diagnosis. We establish a machine learning-assisted dual-marker detection method to analyze the expression of epidermal growth factor receptor (EGFR) and C-X-C chemokine receptor 4 (CXCR4) in serum sEVs for the diagnosis and prognosis prediction of non-small cell lung cancer (NSCLC). We find that the serum sEV EGFR and CXCR4 are significantly higher in advanced stage NSCLC (A/NSCLC) patients compared to early stage NSCLC (E/NSCLC) patients and the healthy donors (HDs). A receiver operating characteristic curve (ROC) analysis demonstrates that the combination of EGFR and CXCR4 in serum sEVs as an efficient diagnostic index and malignant degree indicator for NSCLC. Machine learning further shows a diagnostic accuracy of 97.4% for the training cohort and 91.7% for the validation cohort based on the combinational marker. Moreover, this machine leaning-assisted serum sEV analysis successfully predicts the possibility of tumor relapse in three NSCLC patients by comparing their serum sEVs before and three days after surgery. This study provides an intelligent serum sEV-based assay for the diagnosis and prognosis prediction of NSCLC, and will benefit the precision management of NSCLC.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3