Investigations into the Approaches of Computational Fluid Dynamics for Flow-Excited Resonator Helmholtz Modeling within Verification on a Laboratory Benchmark

Author:

Sergeev Daniil1ORCID,V’yushkina Irina1ORCID,Eremeev Vladimir1,Stulenkov Andrei1,Pyalov Kirill2

Affiliation:

1. Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), 46 Ul’yanov Street, Nizhny Novgorod 603950, Russia

2. Joint-Stock Company “Central Design Bureau for Marine Engineering “Rubin” (CDB ME “Rubin”) 90, Marata Str., Saint Petersburg 191119, Russia

Abstract

This paper presents the results of a study of self-sustained processes excited in a Helmholtz resonator after a flow over its orifice. A comparative analysis of various approaches to the numerical modeling of this problem was carried out, taking into account both the requirements for achieving the required accuracy and taking into account the resource greediness of calculations, the results of which were verified by comparison with data obtained during a special experiment. The configuration with a spherical resonator with a natural frequency of 260 Hz and an orifice diameter (about 5 cm) in an air flow with a speed of 6 to 14 m/s was considered. A comparison of the calculation results with data obtained in experiments carried out in the wind tunnel demonstrated that the accuracy of calculations of the characteristics of the self-sustained mode using the simplest URANS class model tends to the accuracy of calculations within the large eddy simulation approach formulated in the WMLES model. At the same time, when using WMLES, it is possible to better reproduce the background level of pulsations. From the point of view of resource greediness, expressed in the number of core hours spent obtaining a solution, both models of the turbulence turned out to be almost equivalent when using the same grid models.

Funder

Institute of Applied Physics of Russian Academy of Sciences

Publisher

MDPI AG

Subject

Acoustics and Ultrasonics

Reference23 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3