Study on the Output Performance of a Nonlinear Hybrid Piezoelectric-Electromagnetic Harvester under Harmonic Excitation

Author:

Liu Haipeng,Gao Shiqiao,Wu Junru,Li Ping

Abstract

The nonlinear energy harvester has become a hot topic due to its broad bandwidth and lower resonant frequency. Based on the preliminary test and analyses in our previous work, further analyses and tests on the influence of parameters, including the nonlinear magnetic force of the hybrid energy harvesting structure on its output performance under harmonic excitation, are performed in this paper, which will provide powerful support for structural optimization. For designing a nonlinear piezoelectric-electromagnetic hybrid energy harvester, the state equation of electromechanical coupling, the harmonic response and average output power, voltage, and current of a nonlinear hybrid energy harvester under harmonic excitation are derived by the harmonic balance method. The effects of the excitation acceleration and the external load on the output performance of the nonlinear hybrid energy harvester are verified through experimental tests. The results showed that the output power of the nonlinear hybrid energy harvester increases with the increase in the acceleration of harmonic excitation, and the increase is affected by external load. When the piezoelectric-electromagnetic hybrid harvester operates at the optimal load and the resonant frequency, the average output power reaches its maximum value and the increase of the load of the piezoelectric unit makes the resonant frequency of the energy harvesting system increase. Compared with linear harvesting structures, the nonlinear hybrid harvester has better flexibility of environmental adaptability and is more suitable for harvesting energy in low-frequency environments.

Publisher

MDPI AG

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A piezo-electromagnetic hybrid multi-directional vibration energy harvester in freight trains;Sustainable Materials and Technologies;2024-09

2. Multi-Source Energy Harvesting Systems: A PRISMA Approach on Energy Sources and Optimization Strategies;2023 IEEE 15th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM);2023-11-19

3. A Self-Powered Interface Circuit for Simultaneous Piezoelectric and Electromagnetic Energy Extraction;IEEE Transactions on Power Electronics;2023-09

4. 压电-电磁混合振动俘能器的实验与理论分析;Journal of Zhejiang University-SCIENCE A;2023-08-01

5. Hybrid Nonlinear Vibration Energy Harvester Due to Combined Effect of Stretching and Magnetic-Induced Nonlinearity;Lecture Notes in Electrical Engineering;2021-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3