Abstract
Swirl burners are widely used in numerous practical applications since they are characterized by low pollutant emission and a wide operating range. Besides reliable operation, a burner must fulfill noise emission regulations, which is often a sound pressure level in dB(A) when people are affected. Therefore, the present paper evaluates the overall sound pressure level (OASPL) variation of a 15-kW liquid-fueled turbulent atmospheric swirl burner at various setups. Firstly, the combustion air flow rate was adjusted, which induced a swirl number modification due to the fixed swirl vanes. Secondly, the atomizing pressure of the plain-jet airblast atomizer was modified, which also affected the swirl number. High atomizing air jets notably increased combustion noise by intensifying the shear layer. Thirdly, a geometrical modification was performed; 0°–60° half cone angle quarls in 15° steps were installed on the lip of the baseline burner for extended flame stability. By filtering the OASPL to the V-shaped flames, a linearly decreasing trend was observed as a function of swirl number. Their derivative also has a linearly decreasing characteristic as a function of the atomizing pressure.
Funder
Ministry of Innovation and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献