Resonant Metasurfaces with a Tangential Impedance

Author:

Kanev NikolayORCID

Abstract

Metasurfaces formed by monopole and dipole resonators are studied theoretically. The monopole resonators are Helmholtz resonators or membranes vibrating on the first eigenfrequency; the dipole ones are spheres on springs or membranes vibrating on the second eigenfrequency. It is shown that acoustic properties of the metasurface formed by the built-in monopole resonators can be described by an equivalent impedance, which characterizes a normal forcing to the surface, whereas this impedance is not suitable for the metasurface formed by the dipole resonators, because motion of the metasurface is excited by a forcing tangential to the surface. For such boundaries, a new characteristic named “tangential impedance” is proposed. This is a ratio of the second derivative of the sound pressure along a coordinate tangential to the boundary to the normal velocity of the boundary. The dipole metasurface can be described by the equivalent tangential impedance. Reflection and absorption coefficients of the surface with the tangential impedance are found for a harmonic plane wave in dependance of an incidence angle. It is found that the angular dependences of the coefficients are very different for the monopole and dipole metasurfaces.

Publisher

MDPI AG

Subject

General Medicine,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Acoustic Properties of Surfaces Covered by Multipole Resonators;Acoustics;2024-05-25

2. Electromagnetic Field Emitted by a Moving Dipole;2024 6th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE);2024-02-29

3. Using a One-Dimensional Linear Microphone Array to Identify Work Area Noise Sources;2024 6th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE);2024-02-29

4. Design and Manufacturing of the Multi-Layered Metamaterial Plate with Interfacial Crack-like Voids and Experimental-Theoretical Study of the Guided Wave Propagation;Acoustics;2023-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3