Author:
Dou Liangbin,Zuo Xiongdi,Qu Le,Xiao Yingjian,Bi Gang,Wang Rui,Zhang Ming
Abstract
This paper studied the fracability of tight sandstone reservoirs by means of incorporating geomechanics properties and surrounding in situ stresses into a new model. The new fracability evaluation model consists of variables such as brittleness index, critical strain energy release rate index, horizontal stress difference, and minimum horizontal principal stress gradient. The probability of interconnection of a complex fracture network was quantitatively studied by the brittleness index and horizontal principal stress difference index. The probability of obtaining a large stimulated reservoir volume was evaluated by the critical strain energy release rate index and minimum horizontal principal stress gradient which also quantifies conductivity. This model is more capable of evaluating fracability, i.e., it agrees better with the history of production with a high precision and had correlation coefficients (R2) of 0.970 and 0.910 with liquid production of post-fracturing well testing and the average production of six months of post-fracturing, respectively. It is convenient that all model inputs were obtained by means of loggings. Using this model, tight sandstone reservoirs were classified into three groups according to fracability: Frac ≥ 0.3 MPa−1·m for Type-I, 0.22 MPa−1·m ≤ Frac < 0.3 MPa−1·m for Type-II, and Frac < 0.22 MPa−1·m for Type-III.
Funder
National Natural Science Foundation of China
Foundation of Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献