A New Method of Quantitatively Evaluating Fracability of Tight Sandstone Reservoirs Using Geomechanics Characteristics and In Situ Stress Field

Author:

Dou Liangbin,Zuo Xiongdi,Qu Le,Xiao Yingjian,Bi Gang,Wang Rui,Zhang Ming

Abstract

This paper studied the fracability of tight sandstone reservoirs by means of incorporating geomechanics properties and surrounding in situ stresses into a new model. The new fracability evaluation model consists of variables such as brittleness index, critical strain energy release rate index, horizontal stress difference, and minimum horizontal principal stress gradient. The probability of interconnection of a complex fracture network was quantitatively studied by the brittleness index and horizontal principal stress difference index. The probability of obtaining a large stimulated reservoir volume was evaluated by the critical strain energy release rate index and minimum horizontal principal stress gradient which also quantifies conductivity. This model is more capable of evaluating fracability, i.e., it agrees better with the history of production with a high precision and had correlation coefficients (R2) of 0.970 and 0.910 with liquid production of post-fracturing well testing and the average production of six months of post-fracturing, respectively. It is convenient that all model inputs were obtained by means of loggings. Using this model, tight sandstone reservoirs were classified into three groups according to fracability: Frac ≥ 0.3 MPa−1·m for Type-I, 0.22 MPa−1·m ≤ Frac < 0.3 MPa−1·m for Type-II, and Frac < 0.22 MPa−1·m for Type-III.

Funder

National Natural Science Foundation of China

Foundation of Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference53 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3