Cryogenic-Energy-Storage-Based Optimized Green Growth of an Integrated and Sustainable Energy System

Author:

Nazir Muhammad ShahzadORCID,Abdalla Ahmed N.,M. Metwally Ahmed Sayed,Imran MuhammadORCID,Bocchetta PatriziaORCID,Javed Muhammad SufyanORCID

Abstract

The advancement of using the cryogenic energy storage (CES) system has enabled efficient utilization of abandoned wind and solar energy, and the system can be dispatched in the peak hours of regional power load demand to release energy. It can fill the demand gap, which is conducive to the peak regulation of the power system and can further promote the rapid development of new energy. This study optimizes the various types of energy complementary to the CES system using hybrid gravitational search algorithm-local search optimization (hGSA-LS). First, the mathematical model of the energy storage system (ESS) including the CES system is briefly described. Second, an economic scheduling optimization model of the IES is constructed by minimizing the operating cost of the system. Third, the hGSA-LS methods to solve the optimization problem are proposed. Simulations show that the hGSA-LS methodology is more efficient. The simulation results verify the feasibility of CES compared with traditional systems in terms of economic benefits, new energy consumption rate, primary energy saving rate, and carbon emissions under different fluctuations in energy prices. Optimization of the system operation using the proposed hGSA-LS algorithm takes 5.87 s; however, the GA, PSO, and GSA require 12.56, 10.33, and 7.95 s, respectively. Thus, the hGSA-LS algorithm shows a comparatively better performance than GA, PSO, and GSA in terms of time.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3